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Abstract: Speech synthesis has improved dramatically over recent years, enabled by large datasets and advances in neural net-
work architectures. Little is known, however, about how synthesised speech patterns are realized from a phonetic perspective.
By synthesising speech in two languages with differing implementations of stop voicing, we observe that synthesised speech
broadly follows expected patterns for each language, though partially diverges for specific segments. Synthesising speakers into
the opposing language also results in stops similar to target language distributions. These findings demonstrate the capability
of speech synthesis models to encode phonetic information and further motivate questions regarding the phonetics of
synthesised speech. VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).
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1. Introduction

Recent years have seen a substantial increase in both the performance and widespread application of machine learning
models, including large language models (LLMs), across many spheres of life. In the domain of speech technology, since
the release of the Tacotron speech synthesis model (Wang et al., 2017), a vast array of speech synthesis models have been
released with the capacity to generate highly fluent and naturalistic speech, including the “cloning” or “zero-shot synthesis”
of a target speaker's voice with small amounts (1� 5min) of input speech (e.g., Betker, 2023; Wang et al., 2023; Du et al.,
2024; Liao et al., 2024; Casanova et al., 2024). In contrast to the previous “state-of-the-art” approaches to speech synthesis
(see Tokuda et al., 2013, for a review), these models are trained to predict a spectrogram given an input text, in many
cases without utilising any intermediate phonological representations (i.e., phoneme sequences). Instead, these models uti-
lise the LLM framework of using high-dimensional “tokens” to represent the complex relationship between text and spec-
tral information (Guo et al., 2025).

Despite the highly fluent and expressive speech generated from these speech synthesis models, there remains little
understanding as to how these models store and represent linguistic information (see, e.g., tom Dieck et al., 2022; Liu
et al., 2023, for analysis of similar models), as well as the extent to which this synthesised speech exhibits similar patterns
of linguistic variability to speech produced by humans. The quality of speech synthesis models is typically evaluated
impressionistically (see Kirkland et al., 2023, for a review) or through applying speech recognition to their outputs (Taylor
and Richmond, 2021), leaving unclear how linguistic and phonetic information is reproduced in the synthesised speech sig-
nal. Indeed, very little work has investigated the production of speech by modern speech synthesis systems from an
acoustic-phonetic perspective, leaving open many questions about how speech synthesis models “behave” phonetically,
such as how linguistic contrasts are phonetically reproduced in synthesised speech, and how speaker-specific and linguistic
information is disentangled in order to synthesise a particular speaker (e.g., Gwizdzinski et al., 2023; Song et al., 2025). We
explore these questions in this study, focusing specifically on the voicing contrast in stop consonants and how
synthetically-generated speech represents these contrasts acoustically. Put differently, in what ways do synthesised stops pat-
tern similarly or differently from human-produced stops? To explore this issue, we compare the acoustic-phonetic patterning
of synthesised stops to that expected from the previous literature based on speech produced by humans. Specifically, we
examine the marking of the phonological voicing contrast in both English and Japanese: two languages that share the same
phonological voicing contrast but differ greatly in how it is implemented phonetically. While both languages utilise a two-
way voiced/voiceless distinction in singleton stops ({/p/, /t/, /k/} vs {/b/, /d/, /g/}), English is characterised as an “aspirat-
ing” language with the phonological voicing in stops predominantly distinguished by (positive) voice onset time (VOT);
this contrasts with the characterisation of Japanese as a “voicing” language, utilising greater use of voicing during stop
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closures to mark the phonological contrast (Iverson and Salmons, 1995; Nasukawa, 2005). Our two research questions,
which explore the extent to which modern speech synthesis models learn and reproduce patterns of linguistic and phonetic
variation, are as follows:

• RQ1: To what extent does the acoustic realisation of stop voicing in synthesised speech follow the expected phonetic pat-
terns from human speech (e.g., in both English and Japanese respectively)?

• RQ2: What is the acoustic-phonetic profile of stops when synthesised in the opposite language of the input speaker (e.g., a
Japanese speaker ! English)?

Specifically, we investigate these questions concerning three acoustic cues to the stop voicing contrast in
utterance-medial stops: VOT, closure duration (CD), and the degree of closure voicing (CV). English has been found to
have medial positive VOT values of 7–20 milliseconds (ms) for voiced stops, and 40-60ms for voiceless stops (Edwards,
1981; Byrd, 1993; Sonderegger et al., 2020). Japanese medial VOT is typically realised with approximately 12ms for voiced
stops (Tanner et al., 2025a; Shimizu, 1996) and between 25 and 60ms for voiceless stops, depending on place of articula-
tion (Tanner et al., 2025a; Riney et al., 2007). English CD has also been found to be between 40–50 ms for voiceless stops,
and 50-80ms for voiced stops (Edwards, 1981; Sonderegger et al., 2020; Byrd, 1993), compared with 35ms for voiced and
65ms for voiceless stops for Japanese (Homma, 1981; Tanner et al., 2025a). Keating (1984) reports that CV is common in
English intervocalic positions, with voicing “bleeding” from the preceding segment (Docherty, 1992; Davidson, 2016).
While CV itself has been analysed with multiple different approaches across studies, it has been found that English voice-
less stops are likely to contain approximately 20%–30% voicing (Docherty, 1992; Edwards, 1981), with 70%–80% voicing
for voiced stops (Jacewicz et al., 2009; Edwards, 1981). In contrast, CV is less frequent in Japanese voiceless stops (� 10%),
but near-obligatory (>80%) voicing for voiced stops (Gao and Arai, 2019; Tanner et al., 2020).

2. Methods

2.1 Data

The data used for this study comes from the University of Tsukuba Multi-Language Corpus (Itahashi, 2006), each contain-
ing reading passages (North Wind & Sun) and single-word productions (days of the week, numerals, etc) from each
speaker for 11 languages. For this study, we use the English and Japanese recordings from eight (four female) English and
13 (six female) Japanese speakers.1 The speech synthesis model used to generate speech samples for this study was the X-
TTS speech synthesis model (Casanova et al., 2024), chosen because it supports both zero-shot speaker synthesis for both
languages of interest, in order to avoid the potential confound of comparing different models with different architectures.
The X-TTS model consists of a generative pretrained transformer (GPT) architecture trained to predict a spectrogram
given a sentence of written text and language code (in the form “[lang]text”) and converted to a 25 kHz waveform.
Speaker information is encoded within a 1028-dimensional embedding space, which is used to condition the vocoding pro-
cess during upsampling of the waveform.

For Japanese, 100 sentences were selected from the phoneme-balanced subset of the Voice Actress Corpus
(Sonobe et al., 2017). For English, 582 sentences (due to the relative rarity of intervocalic stops) were selected from The
Rainbow Passage, Please Call Stella, Comma Gets A Cure, Arthur The Rat, and the TIMIT corpus (Garofolo et al., 1993).
As the X-TTS model does not natively support multi-speaking finetuning, all sentences in both languages were synthesised
in a zero-shot fashion (i.e., without model finetuning), resulting in speech generated in both the same language as the tar-
get speaker (i.e., English ! English; Japanese ! Japanese) as well as the opposite language (English ! Japanese; Japanese
! English). All synthesised sentences were then aligned using the Montreal Forced Aligner (McAuliffe et al., 2017a), using
the english_mfa and japanese_mfa phonesets and acoustic models, respectively. Data for all utterance-medial stops,
including segmental information (e.g., place of articulation, duration, speech rate), and speaker metadata (e.g., synthesised
language, speaker original language) were extracted from the aligned corpora extracted using PolyglotDB package
(McAuliffe et al., 2017b). VOT was estimated using the AutoVOT package (Keshet et al., 2014), using the default pre-
trained acoustic model, with approximately 25% tokens of each dataset spot-checked. CD was calculated as the duration
between the onset of the force-aligned stop boundary and the start of VOT. CV was calculated using the VoiceReport func-
tion in the Parselmouth (Jadoul et al., 2018) Python wrapper for Praat (Boersma and Weenink, 2023), based on speaker-
level estimated Pitch tracks. The fraction of unvoiced frames within the stop closure was then subtracted from 100 (to
reflect a fraction of voiced frames) and then divided by 100 to reflect a range of closure voicing values between 0 and 1
[e.g., (100–70)/100¼ 0.3, Tanner et al., 2025a)]. Japanese stops either followed or preceded by devoiced vowels were
excluded. In total, 16 632 English and Japanese utterance-medial stops were included in the analysis, which is summarised
in Table 1.

2.2 Models

To address our two research questions, we take an approach to linear regression modelling that best suits the properties and
distribution of the three acoustic properties of interest (VOT, CD, CV), made possible by the flexibility of model specifica-
tion in the brms (Bürkner, 2021) Bayesian regression interface to the Stan programming language (Carpenter et al., 2017).
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We model VOT and CD—for which the logarithm of their values is normally distributed—using the Lognormal model
family. As CV is measured as a bounded [0,1] value, we model closure duration using the Zero-One Inflated Beta
(ZOIB) regression family. ZOIB consist of two distributional response parameters, corresponding to the mean (l) and
spread (/) of the Beta distribution, as well as two additional logistic/binomial responses capturing the probability of values
at the extreme 0 and 1 values (Ospina and Ferrari, 2012).2

The structure of these regression models was designed to specifically address our research questions while
accounting for other sources of variability in stop realisation, including speech rate, place of articulation, and surrounding
vowel height. Specifically, our model structure contained a binary term for the phonological voicing category of the stop
({voiced,voiceless}) as well as a 4-level factor reflecting the four combinations of speaker original language and syn-
thesised language ({English-English, English-Japanese, Japanese-English, Japanese-Japanese}), as
well as an interaction term between phonological voicing and this 4-level factor, allowing the size of the voicing effect to
differ for each combination. We also included terms for (log-transformed) speech rate, place of articulation of the stop,
and the height of the preceding and following vowel. To further account for sources of variability for each synthesised-lan-
guage/speaker-language combination, we also included interaction terms between speech rate and synthesised-language,
place of articulation and synthesised-language, speech rate and phonological voicing category, and place of articulation and
voicing category. All models included by-speaker random effects for voicing category (correlated with intercepts), place of
articulation, speech rate, and previous and following vowel height. The models were fit with “weakly-informative regularis-
ing” priors, which discourage extreme effect sizes without biasing parameter estimation towards a particular size or direc-
tion (Vasishth et al., 2018). The VOT and CD models were specified with a tð3; 2:9; 2:5Þ prior for the intercepts, while the
CV model was specified with tð3; 0; 2:5Þ priors for the l and / intercepts and logisticð0; 1Þ priors for the zero-one inflation
intercepts. Fixed effect terms for all models were specified with a Normalð0; 2Þ prior, and random effects were specified
with a tð3; 0; 2:5Þ prior. The speaker-level correlation terms were specified with a lkjð1:5Þ prior to discourage extreme
(�1,1) correlation estimations. Model posteriors were sampled for 4000 iterations (2000 warmup) across four chains,
resulting in 8000 posterior samples.

3. Results

We address our research questions by considering the relative differences in both overall effects (e.g., average VOT) and
the size of the voicing contrast (e.g., the average voiced-voiceless difference in VOT) first (RQ1) in speech synthesised in
the same language as the input speaker (i.e., English–English vs Japanese–Japanese), and second (RQ2) in speech synthes-
ised in both the speaker's original language and opposite language (e.g., English–English vs English–Japanese). We report
these differences as model-estimated marginal mean effects between conditions calculated with the emmeans package
(Lenth, 2023), and report the median estimated difference (D̂) and the 100% Credible Interval (CI).3 To assess the degree
of evidence for a particular effect (e.g., a language-specific difference in VOT), we evaluate the degree to which the param-
eter's credible interval falls within the region of practical equivalence (ROPE)—range of values with negligible effect size
(Kruschke, 2010)—which we treat as the range [�0:1; 0:1] (Kruschke and Liddell, 2018). As we are considering the full
range of the posterior distribution (100% confidence interval, CI) with respect to the ROPE, we consider there to be evi-
dence for an effect if the percentage of the distribution within ROPE (%ROPE) is less than 2.5 (Makowski et al., 2019).4

With respect to RQ1, while there is evidence for the languages differing in the size of the VOT voicing contrast
(D̂ ¼ 0:41;CI ¼ ½0:09; 0:68�;%ROPE ¼ 0), Fig. 1(A) illustrates that these estimated VOT values differ from those expected
from previous studies of human speech. While English voiced stops fall within the expected VOT range (10–19 ms), we
observe that the synthesised English voiceless stops exhibit a shorter-than-expected VOT range of 17–36 ms, compared
with the range of 40–60 ms observed for human-produced stops (e.g., Byrd, 1993; Sonderegger et al., 2020). Similarly, for
Japanese, synthesised voiceless stops are realised with much shorter VOT in synthesised speech (10–18 ms) than that
expected for human speech (25–60 ms, Riney et al., 2007; Tanner et al., 2025a). The voicing contrast for CD similarly dif-
fers between synthesised language (D̂ ¼ �0:34;CI ¼ ½�0:54;�0:11�;%ROPE ¼ 0), as illustrated in Fig. 1(B). Specifically,
we find little evidence for a CD-based voicing contrast in English (D̂ ¼ 0:08;CI ¼ ½�0:05; 0:23�;%ROPE ¼ 72:26), with
voiceless closures shorter (36-56ms) than the expected 50-80ms (e.g., Byrd, 1993). This contrasts with the estimated CDs
for Japanese stops of 35–50 ms and 52–75 ms for voiced and voiceless stops, respectively, which closely follow the patterns
for human-produced Japanese stops (Homma, 1981; Tanner et al., 2025a). We find that languages differ in the degree to
which CV differs between voiced and voiceless stops in synthesised speech (D̂ ¼ 1:02;CI ¼ ½0:55; 1:48�;%ROPE ¼ 0),

Table 1. Counts of synthesised tokens used in the analysis, grouped by original language of the speaker.

Speaker language

Speakers Tokens

Male Female English Japanese

English 8 4 3672 2277
Japanese 13 6 6772 3911
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though this mainly reflects differences in CV for voiced stops specifically [Fig. 1(C)]. For English, voiced CD has an esti-
mated range of 42%–56%, substantially lower than that expected for English human speech (70%–90%, Jacewicz et al.,
2009). Japanese synthesised voiced stops are similarly estimated to exhibit lower CD (46%–57%) than the >%80 expected
from previous studies (Gao and Arai, 2019).

When comparing the acoustic properties of synthesised stops between the two speaker languages (RQ2), we find
that English stops synthesised from both English and Japanese speakers differ in the size of the VOT voicing contrast
(D̂ ¼ �0:22;CI ¼ ½�0:50; 0:03�;%ROPE ¼ 0:03) [see Fig. 1(A)]. This is not the case for stops synthesised in Japanese,
however, which do not differ in the VOT voicing contrast size (D̂ ¼ 0:06;CI ¼ ½�0:26; 0:29�;%ROPE ¼ 73:67). We also
observe negligible evidence for differences between input speaker language, for either English or Japanese stops, for either
CD [Fig. 1(B)] or CV [Fig. 1(C)].

4. Discussion

Despite the large advances in the quality and naturalness of speech generated from modern speech synthesis models, little
is known about how these models represent and reproduce patterns of linguistic variability, including the extent to which
these synthesised speech patterns are similar to human speech from an acoustic-phonetic perspective. The goal of this
study is to provide an initial examination into the linguistic behaviour of modern neural-network-based speech synthesis
models, focusing specifically on how acoustic cues to the phonological voicing contrast in stops are acoustically realised in
synthesised speech. By comparing synthesised speech in two languages that differ in the phonetic implementation of stop
voicing (English and Japanese), we find that the acoustic properties of synthesised stops follow the expected patterns for
each language to an extent, though crucially exhibit some differences from human-produced stops in VOT, CD, and CV.
This finding suggests that modern speech synthesis models can learn and reproduce the acoustic-phonetic properties of lin-
guistic contrasts in a language-specific way, but also partially diverge from the expectations for specific cues. When com-
paring the synthesis of a speaker into the opposite language (e.g., English ! Japanese), we find that these stops pattern
similarly to the language being synthesised instead of the original language of the speaker. This suggests that the model is
successfully able to disentangle the language-specific and speaker-specific information from the speech signal, and favours
the language-specific implementation of the stop over that of the implementation it receives as input for conditioning the
synthesised output.

Together, these findings suggest that modern speech synthesis models are capable of encoding and reproducing
patterns of phonetic variation, though the extent to which synthesised speech patterns are similar to human speech varies
between acoustic cues and between languages. While the fact that models can capture broad patterns of phonetic variability
might not be immediately surprising (given the high fluency and naturalness ratings given to the outputs of these models),
the observations reported here raise a number of questions necessary for developing a more comprehensive understanding
of the linguistic behaviour of modern speech synthesis models. For example, why do some synthesised acoustic dimensions
pattern more closely to human speech than others? While this study explicitly explored acoustic patterns of synthesised
stops, it remains unclear the extent to which non-contrastive linguistic properties may be distangled from the speech sig-
nal. For example, to what extent are other speaker-specific dimensions—such as pitch, voice quality, and intonation—
maintained (or disregarded) when synthesising a speaker into a different language? To address these questions more
directly, a clear direction for future work would be to compare synthetic outputs for a given speaker directly with that
speaker's genuine (human) productions. The synthesised speech in this study was created without finetuning: how would

Fig. 1. Model-estimated VOT (A), CD (B), and CV (C) for voiced (black circle) and voiceless (gray triangle) synthesised stops. The X-axis rep-
resents the language of the target speaker and the synthesised language (e.g., English ! Japanese¼English speaker synthesised in Japanese).
Points indicate the median of the posterior distribution, with lines indicating the 95% high-density interval.
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the acoustic realisation of stops differ following finetuning? As the model used in this study explicitly takes the language of
a text as part of the input, to what extent are the findings observed here dependent on the specific architecture of this
model? To what extent can these models capture within-language (i.e., cross-dialectal) variation in the realisation of linguis-
tic contrasts (Gwizdzinski et al., 2023)? How are speaker-specific acoustic properties retained for speakers that fall outside
of the typical speech datasets used for training speech synthesis models, such as child speech or speakers from non-
standard dialects? Given recent work demonstrating patterns of linguistic bias in modern neural speech models (e.g.,
Chang et al., 2024), it is essential for further research to focus on understanding how speech synthesis models learn, repre-
sent, and reproduce linguistic information, and the extent to which speech generated by modern speech synthesis systems
may or may not pattern similarly to speech from human speakers.

Supplementary Material

See the supplementary material for full regression model tables.
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